
A Preview of OPL

Pascal Van Hentenryck

Department of Computing Science and Engineering
UCL

2, Place Sainte-Barbe, B-1348, Louvain-la-Neuve (Belgium)
Email: pvh@info.ucl.ac.be

Abstract

OPL is a modeling language for mathematical programming and combi-
natorial optimization problems. It is the first modeling language to combine
high-level algebraic and set notations from modeling languages with a rich
constraint language and the ability to specify search procedures and strate-
gies that is the essence of constraint programming. In addition, OPL mod-
els can be controlled and composed usingOPLSCRIPT, a script language that
simplifies the development of applications that solve sequences of models,
several instances of the same model, or a combination of bothas in column-
generation applications. This paper illustrates some of the functionalities of
OPL using sport-scheduling, and job-shop scheduling applications. It also
illustrates howOPL models can be composed usingOPLSCRIPT on a simple
configuration example.

1 Introduction

Combinatorial optimization problems are ubiquitous in many practical applica-
tions, including scheduling, resource allocation, planning, and configuration prob-
lems. These problems are computationally difficult (i.e., they are NP-hard) and
require considerable expertise in optimization, software engineering, and the ap-
plication domain.

The last two decades have witnessed substantial development in tools to sim-
plify the design and implementation of combinatorial optimization problems. Their
goal is to decrease development time substantially while preserving most of the
efficiency of specialized programs. Most tools can be classified in two categories:
mathematical modeling languages and constraint programming languages. Math-
ematical modeling languages such as AMPL [4] and GAMS [1] provides very
high-level algebraic and set notations to express concisely mathematical problems

1



that can then be solved using state-of-the-art solvers. These modeling languages
do not require specific programming skills and can be used by a wide audience.
Constraint programming languages such as CHIP [3], PROLOG III and its suc-
cessors [2], OZ [12], and ILOG SOLVER [11] have orthogonal strenghts. Their
constraint languages, and their underlying solvers, go beyond traditional linear
and nonlinear constraints and support logical, high-order, and global constraints.
They also make it possible to program search procedures to specify how to ex-
plore the search space. However, these languages are mostly aimed at computer
scientists and often have weaker abstractions for algebraic and set manipulation.

The work described in this paper originated as an attempt to unify modeling
and constraint programming languages and their underlying implementation tech-
nologies. It led to the development of the optimization programming language
OPL [13], its associated script languageOPLSCRIPT [15], and its development envi-
ronmentOPL STUDIO.

OPL is a modeling language sharing high-level algebraic and set notations with
traditional modeling languages. It also contains some novel functionalities to ex-
ploit sparsity in large-scale applications, such as the ability to index arrays with
arbitrary data structures.OPL shares with constraint programming languages their
rich constraint languages, their support for scheduling and resource allocation
problems, and the ability to specify search procedures and strategies.OPL also
makes it easy to combine different solver technologies for the same application.

OPLSCRIPT is a script language for composing and controllingOPL models. Its
motivation comes from the many applications that require solving several in-
stances of the same problem (e.g., sensibility analysis), sequences of models, or
a combination of both as in column-generation applications.OPLSCRIPT supports a
variety of abstractions to simplify these applications, such asOPL models as first-
class objects, extensible data structures, and linear programming bases to name
only a few.

OPL STUDIO is the development environment ofOPL andOPLSCRIPT. Beyond sup-
port for the traditional ”edit, execute, and debug” cycle, it provides automatic
visualizations of the results (e.g., Gantt charts for scheduling applications), visual
tools for debugging and monitoringOPL models (e.g., visualizations of the search
space), andC++ code generation, orC++ or COM components, to integrate an
OPL model in a larger application. The code generation produces a class for each
model object and makes it possible to add/remove constraints dynamically and to
overwrite the search procedure.

The purpose of this paper is to illustrate some of the functionalities ofOPL and

2



OPLSCRIPT through a number of applications, including a transportation problem,
sport and job-shop scheduling applications, and a configuration problems.

2 A Transportation Problem

This section illustrates some of the functionalities ofOPL to solve large-scale math-
ematical programming problems. Consider, for instance, a transportation problem
where products must be shipped from a set of cities to another set of cities. Each
city may ship, or may request, some units of each product. The demand of the
cities must be met and their supply must be shipped. In addition, there is a con-
straint specifying that the total shipment for all products transported between two
cities may not exceed a specified limit. The goal is to minimize the transportation
cost while satisfying the constraints.

Statement 1 shows a simple model for this problem, which implicitly assumes
that all cities are connected and that all products may be shipped between two
cities. The statement starts by declaring two enumerated types for the cities and
the products. Their initializations are given in a separated data file to isolate the
model from the instance data. It then specifies the capacity limit on the connec-
tions, the supply and demand for each product and each city, and the transportation
cost of a product between two cities. The decision variables in this model areof
the formtrans[p,o,d] and denotes the quantity of productp shipped between
citieso andd. The rest of the statement specifies a linear objective function and
linear constraint. The objective function minimizes the transportation cost

sum(p in Products & o,d in Cities) cost[p,o,d]*trans[p,o,d]

and sums over all products and cities. Note also the constraint

forall(o, d in Cities)
sum(p in Products) trans[p,o,d] <= limit;

which makes sure that the products sent between two cities do not exceed the
capacity.

The above model is not appropriate for large-scale problems where only a
fraction of the cities are connected. For instance, for 100 cities and 100 products,
there are already 10000 ways of shipping a product between two cities, a fraction
of which would probably be relevant in practice.

3



enum Cities ...;
enum Products ...;
float+ limit = ...;
float+ supply[Products,Cities] = ...;
float+ demand[Products,Cities] = ...;
float+ cost[Products,Cities,Cities] = ...;

var float+ trans[Products,Cities,Cities];
minimize

sum(p in Products & o,d in Cities)
cost[p,o,d] * trans[p,o,d]

subject to f
forall(p in Products & o in Cities)

sum(d in Cities) trans[p,o,d] = supply[p,o];
forall(p in Products & d in Cities)

sum(o in Cities) trans[p,o,d] = demand[p,d];
forall(o, d in Cities)

sum(p in Products) trans[p,o,d] <= limit;g;
Figure 1: A Simple Transportation Model (transp.mod).

4



To exploit sparsity often present in large-scale mathematical programming
model, it is useful to reflect the structure of the application closely. Statement
2 depicts a model illustrating this principle. The model is based on two main
ideas: the concept of a connection between two cities and the concept of a route,
i.e., the association of a product and a connection. The data is represented by a set
routes of records of type

struct Connection f Cities o; Cities d; g;
struct Route f Connection e; Products p; g;
The arraycost andtrans can then be indexed with this set illustrating one
of the appealling features ofOPL: the ability to index an array by an arbitrary
data. The data for the supplies and demands are also represented in a sparse way
by projecting the setroutes to obtain their index sets. In addition to that, the
model also pre-computes, in a generic way, the citiesorig[p] that can ship
productp and the citiesdest[p] that can receive productp, as well as some
other information. The rest of the model is generally similar to the non-sparse
model but reflects the new data organization. Note the simplicity of the objective
function

minimize
sum(r in Routes) cost[r] * trans[r]

which sums directly over the routes and the instruction

forall(c in connections)
sum(<c,p> in routes) trans[<c,p>] <= limit;

which generates the capacity constraints efficiently. First, it iterates over the
routes, not over all pairs of cities. Second, the aggregate operatorsum uses pa-
rameterc to index the setroutes, retrieving the relevant products effectively.

3 Sport Scheduling

This section considers the sport-scheduling problem described in [7, 10]. The
problem consists of scheduling games betweenn teams overn � 1 weeks. In
addition, each week is divided inton=2 periods. The goal is to schedule a game
for each period of every week so that the following constraints are satisfied:

5



enum Cities ...;
enum Products ...;

struct Connection f Cities o; Cities d; g;
struct Route f Connection e; Products p; g;
struct Supplier f Products p; Cities o; g;
struct Customer f Products p; Cities d; g;fRouteg Routes = ...;fConnectiong Connections = f c | <c,p> in Routes g;fSupplierg Suppliers = f <p,c.o> | <c,p> in Routes g;
float+ supply[Suppliers] = ...;fCustomerg Customers = f <p,c.d> | <c,p> in Routes g;
float+ demand[Customers] = ...;
float+ lim = ...;
float+ cost[Routes] = ...;fCitiesg orig[p in Products] = f c.o | <c,p> in Routes g;fCitiesg dest[p in Products] = f c.d | <c,p> in Routes g;fConnectiong CP[p in Products] = f c | <p,c> in Routes g;
var float+ trans[Routes];

minimize
sum(r in Routes) cost[r] * trans[r]

subject to f
forall(p in Products & o in orig[p])

sum(<o,d> in CP[p]) trans[<<o,d>,p>] = supply[<p,o>];
forall(p in Products & d in dest[p])

sum(<o,d> in CP[p]) trans[<<o,d>,p>] = demand[<p,d>];
forall(c in Connections)

sum(<c,p> in Routes) trans[<c,p>] <= lim;g;
Figure 2: A Sparse Transportation Model (stransp.mod).

6



Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7
period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4
period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6
period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7
period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

Figure 3: A Solution to the Sport-Scheduling Application with 8 Teams

1. Every team plays against every other team;

2. A team plays exactly once a week;

3. A team plays at most twice in the same period over the course of the season.

A solution to this problem for 8 teams is shown in Figure 3. In fact, the problem
can be made more uniform by adding a ”dummy” final week and requesting that
all teams play exactly twice in each period. The rest of this section considers this
equivalent problem for simplicity.
The sport-scheduling problem is an interesting application for constraint program-
ming. On the one hand, it is a standard benchmark (submitted by Bob Daniel)
to the well-known MIP library and it is claimed in [7] that state-of-the-art MIP
solvers cannot find a solution for 14 teams. TheOPL models presented in this
section are computationally much more efficient. On the other hand, the sport-
scheduling application demonstrates fundamental features of constraint program-
ming including global and symbolic constraints. In particular, the model makes
heavy use of arc-consistency [6], a fundamental constraint satisfaction techniques
from artificial intelligence.

The rest of this section presents a simpleOPL model that solves the 14-teams
problem in about 44 seconds. See [14] for an even more efficient model. Both
models are based on the constraint programs presented in [10].

The simple model is depicted in Figure 4. Its input is the number of teams
nbTeams. Several ranges are defined from the input: the teamsTeams, the
weeksWeeks, and the extended weeksEWeeks, i.e., the weeks plus the dummy
week. The model also declares an enumerated typeslot to specify the team
position in a game (home or away). The declarations

int occur[t in Teams] = 2;

7



int nbTeams = ...;
range Teams 1..nbTeams;
range Weeks 1..nbTeams-1;
range EWeeks 1..nbTeams;
range Periods 1..nbTeams/2;
range Games 1..nbTeams*nbTeams;
enum Slots = f home, away g;
int occur[t in Teams] = 2;
int values[t in Teams] = t;

var Teams team[Periods,EWeeks,Slots];
var Games game[Periods,Weeks];

predicate link(int f,int s,int g)
return g = (f-1) * nbTeams + s;

solve f
forall(w in EWeeks)

alldifferent(
all(p in Periods & s in Slots) team[p,w,s]);

alldifferent(game) onDomain;
forall(p in Periods)

distribute(occur,values,
all(w in EWeeks & s in Slots) team[p,w,s]);

forall(p in Periods & w in Weeks)
link(team[p,w,home],team[p,w,away],game[p,w]);g;

search f
generate(game);g;

Figure 4: A Simple Model for the Sport-Scheduling Model.

8



int values[t in Teams] = t;

specifies two arrays that are initialized generically and are used to state constraints
later on. The arrayoccur can be viewed as a constant function always returning
2, while the arrayvalues can be tought of as the identify function over teams.

The main modeling idea in this model is to use two classes of variables: team
variables that specify the team playing on a given week, period, and slot and the
game variables specifying which game is played on a given week and period. The
use of game variables makes it simple to state the constraint that every team must
play against each other team. Games are uniquely identified by their two teams.
More precisely, a game consisting of home teamh and away teama is uniquely
identified by the integer(h-1)*nbTeams + a. The instruction

var Teams team[Periods,EWeeks,Slots];
var Games game[Periods,Weeks];

declares the variables. These two sets of variables must be linked together to
make sure that the game and team variables for a given period and a given week
are consistent.The instruction

predicate link(int f,int s,int g)
return g = (f-1) * nbTeams + s;

defines a predicate constraint which links the home and away teams with the iden-
tifier of the game. The predicate is used subsequently to state constraints thatare
made arc-consistent by theOPL implementation.

The constraint declarations in the model follow almost directly the problem
description. The constraint

alldifferent( all(p in Periods & s in Slots) team[p,w,s]);

specifies that all the teams scheduled to play on weekw must be different. It uses
an aggregate operatorall to collect the appropriate team variables by iterating
over the periods andOPL enforces arc consistency on this constraint. See [8] for
a description on how to enforce arc consistency on this global constraint. The
constraint

distribute(occur,values,
all(w in EWeeks & s in Slots) team[p,w,s]);

9



specifies that a team plays exactly twice over the course of the ”extended” season.
Its first argument specifies the number of occurrences of the values specified by
the second argument in the set of variables specified by the third argument that
collects all variables playing in periodp. Once again,OPL enforces arc consistency
on this constraint. See [9] for a description on how to enforce arc consistency on
this global constraint. The constraint

alldifferent(game);

specifies that all games are different, i.e., that all teams play against each other
team. These constraints illustrate some of the global constraints ofOPL. Other
global constraints in the current version include a sequencing constraint, a circuit
constraint, and a variety of scheduling constraints. Finally, the constraint

link(team[p,w,home],team[p,w,away],game[p,w]);

is most interesting. It specifies that the gamegame[p,w] consists of the teams
team[p,w,home] andteam[p,w,away]. OPL enforces arc-consitency on
this symbolic constraint.

The search procedure in this statement is extremely simple and consists of
generating values for the games using the first-fail principle. Note also thatgener-
ating values for the games automatically assigns values to the team by constraint
propagation. As mentioned, this model finds a solution for 14 teams in about 44
seconds on a modern PC (400mhz).

4 Job-Shop Scheduling

One of the other significant features ofOPL is its support for scheduling applica-
tions.OPL has a variety of domain-specific concepts for these applications that are
translated into state-of-the-art algorithms. To name only a few, they include the
concepts of activities, unary, discrete, and state resources, reservoirs, and breaks
as well as the global constraints linking them.

Figure 5 describes a simple job-shop scheduling model. The problem is to
schedule a number of jobs on a set of machines to minimize completion time,
often called themakespan. Each job is a sequence of tasks and each task requires
a machine. Figure 5 first declares the number of machines, the number of jobs, and
the number of tasks in the jobs. The main data of the problem, i.e., the duration
of all the tasks and the resources they require, are then given. The next set of
instructions

10



int nbMachines = ...;
range Machines 1..nbMachines;
int nbJobs = ...;
range Jobs 1..nbJobs;
int nbTasks = ...;
range Tasks 1..nbTasks;
Machines resource[Jobs,Tasks] = ...;
int+ duration[Jobs,Tasks] = ...;
int totalDuration =

sum(j in Jobs, t in Tasks) duration[j,t];
ScheduleHorizon = totalDuration;
Activity task[j in Jobs, t in Tasks](duration[j,t]);
Activity makespan(0);
UnaryResource tool[Machines];

minimize makespan.end
subject to f

forall(j in Jobs)
task[j,nbTasks] precedes makespan;

forall(j in Jobs & t in 1..nbTasks-1)
task[j,t] precedes task[j,t+1];

forall(j in Jobs & t in Tasks)
task[j,t] requires tool[resource[j,t]];g;

search f
LDSearch() f

forall(r in Machines
ordered by increasing localSlack(tool[r]))

rank(tool[r]);gg
Figure 5: A Job-Shop Scheduling Model (jobshop.mod).

11



ScheduleHorizon = totalDuration;
Activity task[j in Jobs, t in Tasks](duration[j,t]);
Activity makespan(0);
UnaryResource tool[Machines];

is most interesting. The first instruction describes the schedule horizon, i.e., the
date by which the schedule should be completed at the lastest. In this application,
the schedule horizon is given as the summation of all durations, which is clearly
an upper bound on the duration of the schedule. The next instruction declares the
activities of the problem. Activities are first-class objects inOPL and can be viewed
(in a first approximation) as consisting of variables representing the starting date,
the duration, and the end date of a task, as well as the constraints linking them.
The variables of an activity are accessed as fields of records. In our application,
there is an activity associated with each task of each job. The instruction

UnaryResource tool[Machines];

declares an array of unary resources. Unary resources are, once again, first-class
objects ofOPL; they represent resources that can be used by at most one activity at
anyone time. In other words, two activities using the same unary resource cannot
overlap in time. Note that the makespan is modeled for simplicity as anactivity
of duration zero.

Consider now the problem constraints. The first set of constraints specifies
that the activities associated with the problem tasks precede the makespanactivity.
The next two sets specify the precedence and resource constraints. The resource
constraints specify which activities require which resource. Finally, the search
procedure

search f
LDSearch() f

forall(r in Machines
ordered by increasing localSlack(tool[r]))

rank(tool[r]);gg
illustrates a typical search procedure for job-shop scheduling and the use of lim-
ited discrepancy search (LDS) [5] as a search strategy. The search procedure

forall(r in Machines
ordered by increasing localSlack(tool[r]))

rank(u[r]);

12



consists of ranking the unary resources, i.e., choosing in which order the activi-
ties execute on the resources. Once the resources are ranked, it is easy tofind a
solution. The procedure ranks first the resource with the smallest local slack (i.e.,
the machine that seems to be the most difficult to schedule) and then considers
the remaining resource using a similar heuristic. The instructionLDSearch()
specifies that the search space specified by the search procedure defined above
must be explored using limited discrepancy search. This strategy, which is effec-
tive for many scheduling problems, assumes the existence of a good heuristic. Its
basic intuition is that the heuristic, when it fails, probably would have found a
solution if it had made a small number of different decisions during the search.
The choices where the search procedure does not follow the heuristic are called
discrepancies. As a consequence, LDS systematically explores the search tree by
increasing the number of allowed discrepancies. Initially, a small number ofdis-
crepancies is allowed. If the search is not successful or if an optimal solution is
desired, the number of discrepancies is increased and the process is iterateduntil
a solution is found or the whole search space has been explored. Note that, be-
sides the default depth-first search and LDS,OPL also supports best-first search,
interleaved depth-first search, and depth-bounded limited discrepancy search.It
is interesting to mention that this simple model solves MT10 in about 40 seconds
and MT20 in about 0.4 seconds.

5 A Configuration Problem

This section illustratesOPLSCRIPT, a script language for controlling and composing
OPL models. It shows how to solve an application consisting of a sequence of two
models: a constraint programming model and an integer program. The application
is a configuration problem, known as Vellino’s problem, which is a small but good
representive of many similar applications. For instance, complex sport scheduling
applications can be solved in a similar fashion.

Given a supply of components and bins of various types, Vellino’s problem
consists of assigning the components to the bins so that the bin constraints are
satisfied and the smallest possible number of bins is used. There are five types
of components, i.e., glass, plastic, steel, wood, and copper, and three types of
bins, i.e., red, blue, green. The bins must obey a variety of configuration con-
straints. Containment constraints specify which components can go into which
bins: red bins cannot contain plastic or steel, blue bins cannot contain wood or

13



Model bin("genBin.mod","genBin.dat");
import enum Colors bin.Colors;
import enum Components bin.Components;
struct Bin f Colors c; int n[Components]; g;
int nbBin := 0;
Open Bin bins[1..nbBin];
while bin.nextSolution() do f

nbBin := nbBin + 1;
bins.addh();
bins[nbBin].c := bin.c;
forall(c in Components)

bins[nbBin].n[c] := bin.n[c];g
Model pro("chooseBin.mod","chooseBin.dat");
if pro.solve() then fcout << "Solution at cost: ";

cout << pro.objectiveValue() << endl;g
Figure 6: A Script to Solve Vellino’s Problem (vellino.osc) .

plastic, and green bins cannot contain steel or glass. Capacity constraints specify
a limit for certain component types for some bins: red bins contain at most one
wooden component and green bins contain at most two wooden components. Fi-
nally, requirement constraints specify some compatibility constraints between the
components: wood requires plastic, glass excludes copper and copper excludes
plastic. In addition, we are given an initial capacity for each bin, i.e., red bins
have a capacity of 3 components, blue bins of 1 and green bins of 4 and a de-
mand for each component, i.e., 1 glass, 2 plastic, 1 steel, 3 wood, and 2 copper
components.
The strategy to solve this problem consists of generating all the possible bin con-
figurations and then to choose the smallest number of them that meet the demand.
This strategy is implemented using the script depicted in Figure 6 and two models
genBin.mod andchooseBin.mod depicted in Figures 7 and 8. It is interest-

14



enum Colors ...;
enum Components ...;
int capacity[Colors] = ...;
int maxCapacity = max(c in Colors) capacity[c];
var Colors c;
var int n[Components] in 0..maxCapacity;
solve f

0 < sum(c in Components) n[c] <= capacity[c];
c = red =>

n[plastic] = 0 & n[steel] = 0 & n[wood] <= 1;
c = blue =>

n[plastic] = 0 & n[wood] = 0;
c = green =>

n[glass] = 0 & n[steel] = 0 & n[wood] <= 2;
n[wood] >= 1 => n[plastic] >= 1;
n[glass] = 0 \/ n[copper] = 0;
n[copper] = 0 \/ n[plastic] = 0;g;
Figure 7: Generating the Bins in Vellino’s Problem (genBin.mod) .

15



import enum Colors;
import enum Components;
struct Bin f Colors c; int n[Components]; g;
import int nbBin;
import Bin bins[1..nbBin];
range R 1..nbBin;
int demand[Components] = ...;
int maxDemand = max(c in Components) demand[c];
var int produce[R] in 0..maxDemand;
minimize

sum(b in R) produce[b]
subject to

forall(c in Components)
sum(b in R) bins[b].n[c]*produce[b] = demand[c];

Figure 8: Choosing the Bins in Vellino’s Problem (chooseBin.mod) .

16



ing to study the script in detail at this point. The instruction

Model bin("genBin.mod","genBin.dat");

declare the first model. Models are, of course, a fundamental concept ofOPLSCRIPT:
they support a variety of methods (e.g.,solve andnextSolution), their data
can be accessed as fields of records, and they can be passed as parameters to
procedures. The instructions

import enum Colors bin.Colors;
import enum Components bin.Components;

import the enumerated types from the model to the script; these enumerated types
will be imported by the second model as well. The instructions

struct Bin f Colors c; int n[Components]; g;
int nbBin := 0;
Open Bin bins[1..nbBin];

declare a variable to store the number of bin configurations and an open array to
store the bin configurations themselves. Open arrays are arrays that can grow and
shrink dynamically during the execution. The instructions

while bin.nextSolution() do f
nbBin := nbBin + 1;
bins.addh();
bins[nbBin].c := bin.c;
forall(c in Components)

bins[nbBin].n[c] := bin.n[c];g
enumerate all the bin configurations and store them in thebin array in model
pro. Instructionbin.nextSolution() returns the next solution (if any) of
the modelbin. Instructionbins.addh increases the size of the open array
(addh stands for ”add high”). The subsequent instructions access the model data
and store them in the open array. Once this step is completed, the second model
is executed and produces a solution at cost 8.

ModelgenBin.mod specifies how to generate the bin configurations: It is a
typical constraint program using logical combinations of constraints that should

17



not raise any difficulty. ModelchooseBin.mod is an integer program that
chooses and minimizes the number of bins. This model imports the enumerated
types as mentioned previously. It also imports the bin configurations using the
instructions

import int nbBin;
import Bin bins[1..nbBin];

It is important to stress to both models can be developed and tested independently
since import declarations can be initialized in a data file when a model is runin
isolation (i.e., not from a script). This makes the overall design compositional.

6 Conclusion

The purpose of this paper was to review, through four applications, a number
of features ofOPL to give a preliminary understanding of the expressiveness of
the language. These features include very high-level algebraic notations and data
structures, a rich constraint programming language supporting logical, higher-
level, and global constraints, support for scheduling and resource allocation prob-
lems, and search procedures and strategies. The paper also introduced briefly
OPLSCRIPT, a script language to control and composeOPL models. The four applica-
tions presented in this paper should give a preliminary, although very incomplete,
understanding of howOPL can decrease development time significantly.

References

[1] J. Bisschop and A. Meeraus. On the Development of a General Algebraic
Modeling System in a Strategic Planning Environment.Mathematical Pro-
gramming Study, 20:1–29, 1982.

[2] A. Colmerauer. An Introduction to Prolog III.Commun. ACM, 28(4):412–
418, 1990.

[3] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The Constraint Logic Programming Language CHIP. InPro-
ceedings of the International Conference on Fifth Generation Computer Sys-
tems, Tokyo, Japan, December 1988.

18



[4] R. Fourer, D. Gay, and B.W. Kernighan.AMPL: A Modeling Language for
Mathematical Programming. The Scientific Press, San Francisco, CA, 1993.

[5] W.D. Harvey and M.L. Ginsberg. Limited Discrepancy Search. InProceed-
ings of the 14th International Joint Conference on Artificial Intelligence,
Montreal, Canada, August 1995.

[6] A.K. Mackworth. Consistency in Networks of Relations.Artificial Intelli-
gence, 8(1):99–118, 1977.

[7] K. McAloon, C. Tretkoff, and G. Wetzel. Sport League Scheduling. InPro-
ceedings of the 3th Ilog International Users Meeting, Paris, France, 1997.

[8] J-C. Régin. A filtering algorithm for constraints of difference in CSPs.In
AAAI-94, proceedings of the Twelth National Conference on Artificial Intel-
ligence, pages 362–367, Seattle, Washington, 1994.

[9] J-C. Régin. Generalized arc consistency for global cardinality constraint.
In AAAI-96, proceedings of the Thirteenth National Conference on Artificial
Intelligence, pages 209–215, Portland, Oregon, 1996.

[10] J-C. Régin. Sport league scheduling. InINFORMS, Montreal, Canada, 1998.

[11] Ilog SA. Ilog Solver 4.31 Reference Manual, 1998.

[12] G. Smolka. The Oz Programming Model. In Jan van Leeuwen, editor,Com-
puter Science Today. LNCS, No. 1000, Springer Verlag, 1995.

[13] P. Van Hentenryck.The OPL Optimization Programming Language. The
MIT Press, Cambridge, Mass., 1999.

[14] P. Van Hentenryck, L. Michel, L. Perron, and J.C. Regin”, Constraint
Programming in OPL. inProceedings of the International Conference on
the Principles and Practice of Declarative Programming (PPDP’99), Paris,
France, 1999

[15] P. Van Hentenryck.OPL Script: Composing and Controlling Models. Pro-
ceedings of the 1999 Workshop of the ERCIM Working Group on Con-
straints, Paphos, Cyprus, 1999

19


