A Preview of OPL

Pascal Van Hentenryck

Department of Computing Science and Engineering
UCL
2, Place Sainte-Barbe, B-1348, Louvain-la-Neuve (Belgium)
Email: pvh@info.ucl.ac.be

Abstract

oPL is a modeling language for mathematical programming andoéom
natorial optimization problems. It is the first modelingdaiage to combine
high-level algebraic and set notations from modeling laggs with a rich
constraint language and the ability to specify search ghows and strate-
gies that is the essence of constraint programming. IniaddibpL mod-
els can be controlled and composed usimgscriet, a script language that
simplifies the development of applications that solve segege of models,
several instances of the same model, or a combination ofasoithcolumn-
generation applications. This paper illustrates someefuhctionalities of
oPL using sport-scheduling, and job-shop scheduling apjmicsat It also
illustrates howorL models can be composed usiagLscrirT ON a simple
configuration example.

1 Introduction

Combinatorial optimization problems are ubiquitous in many practical applica-
tions, including scheduling, resource allocation, planning, and configuration prob-
lems. These problems are computationally difficult (i.e., they are NP-hard) and
require considerable expertise in optimization, software engineering, and the ap-
plication domain.

The last two decades have withessed substantial development in tools to sim-
plify the design and implementation of combinatorial optimization problems.rThei
goal is to decrease development time substantially while preserving most of the
efficiency of specialized programs. Most tools can be classified in ttegoges:
mathematical modeling languages and constraint programming languages. Math-
ematical modeling languages such as AMPL [4] and GAMS [1] provides very
high-level algebraic and set notations to express concisely mathematicampeobl

1

that can then be solved using state-of-the-art solvers. These modelingdasgua
do not require specific programming skills and can be used by a wide audience.
Constraint programming languages such as CHIP [BphU®G Il and its suc-
cessors [2], OZ [12], andLbG SOLVER [11] have orthogonal strenghts. Their
constraint languages, and their underlying solvers, go beyond traditional linear
and nonlinear constraints and support logical, high-order, and global constraints.
They also make it possible to program search procedures to specify how to ex-
plore the search space. However, these languages are mostly aimed atesomput
scientists and often have weaker abstractions for algebraic and set natioipul

The work described in this paper originated as an attempt to unify modeling
and constraint programming languages and their underlying implementation tech-
nologies. It led to the development of the optimization programming language
orL [13], its associated script languageLscrier [15], and its development envi-
ronmentopL stubio.

orL is a modeling language sharing high-level algebraic and set notations with
traditional modeling languages. It also contains some novel functionalities to e
ploit sparsity in large-scale applications, such as the ability to indeysmwith
arbitrary data structureseL shares with constraint programming languages their
rich constraint languages, their support for scheduling and resource allocation
problems, and the ability to specify search procedures and strategiesilso
makes it easy to combine different solver technologies for the same appilicati

oprLscripT IS @ script language for composing and controllorg models. Its
motivation comes from the many applications that require solving several in-
stances of the same problem (e.g., sensibility analysis), sequences of models, or
a combination of both as in column-generation applicati@rsscrier SUPpPOrts a
variety of abstractions to simplify these applications, sucbrasnodels as first-
class objects, extensible data structures, and linear programming baseseto na
only a few.

opL stupio IS the development environment of. andoprLscrirr. Beyond sup-
port for the traditional "edit, execute, and debug” cycle, it provides automatic
visualizations of the results (e.g., Gantt charts for scheduling applicationsdJ vis
tools for debugging and monitoring. models (e.g., visualizations of the search
space), andC++ code generation, oC++ or COM components, to integrate an
orL model in a larger application. The code generation produces a class for each
model object and makes it possible to add/remove constraints dynamically and to
overwrite the search procedure.

The purpose of this paper is to illustrate some of the functionalities.ohnd

2

opLscrier through a number of applications, including a transportation problem,
sport and job-shop scheduling applications, and a configuration problems.

2 A Transportation Problem

This section illustrates some of the functionalitiesmfto solve large-scale math-
ematical programming problems. Consider, for instance, a transportation problem
where products must be shipped from a set of cities to another set of cities. Each
city may ship, or may request, some units of each product. The demand of the
cities must be met and their supply must be shipped. In addition, there is a con-
straint specifying that the total shipment for all products transported between t
cities may not exceed a specified limit. The goal is to minimize the tratespor

cost while satisfying the constraints.

Statement 1 shows a simple model for this problem, which implicitly assumes
that all cities are connected and that all products may be shipped between two
cities. The statement starts by declaring two enumerated types fortigeamnd
the products. Their initializations are given in a separated data filokatésthe
model from the instance data. It then specifies the capacity limit on the connec-
tions, the supply and demand for each product and each city, and the transportation
cost of a product between two cities. The decision variables in this modef are
the formt r ans|[p, o, d] and denotes the quantity of prodpcshipped between
citieso andd. The rest of the statement specifies a linear objective function and
linear constraint. The objective function minimizes the transportation cost

sum(p in Products & o,d in Cities) cost[p,o0,d]*trans[p,o,d]

and sums over all products and cities. Note also the constraint

forall (o, din Cties)
sum(p in Products) trans[p,o0,d] <=1limt;

which makes sure that the products sent between two cities do not exceed the
capacity.

The above model is not appropriate for large-scale problems where only a
fraction of the cities are connected. For instance, for 100 cities and 100 products,
there are already 10000 ways of shipping a product between two cities, a fraction
of which would probably be relevant in practice.

enumCities ...;

enum Products ...;

float+ Iimt = ...;

fl oat + suppl y[Products Cties]
fl oat + demand[Products, Citi es] o)
fl oat+ cost[Products,Cities, Cltles] = ...

var float+ trans[Products,Cities,Cties];
mnimze
sum(p in Products & o,d in Cities)
cost[p,o0,d] * trans[p,o,d]
subject to {
forall (p in Products & o in Gties)
sum(d in Cties) trans[p,o0,d] = supply[p,o];
forall (p in Products &d in Gties)
sum(o in Cities) trans[p,0,d] = demand[p, d];
forall (o, din Gties)
sum(p in Products) trans[p,o0,d] <=1limt;

Figure 1: A Simple Transportation Modél{ansp. nod).

To exploit sparsity often present in large-scale mathematical prognagnmi
model, it is useful to reflect the structure of the application closely. eBtant
2 depicts a model illustrating this principle. The model is based on two main
ideas: the concept of a connection between two cities and the concept of a route,
I.e., the association of a product and a connection. The data is represented by a set
r out es of records of type

struct Connection { Cities o; Cties d; };
struct Route { Connection e; Products p; };

The arraycost andt r ans can then be indexed with this set illustrating one

of the appealling features afrL: the ability to index an array by an arbitrary

data. The data for the supplies and demands are also represented in a sparse way
by projecting the setout es to obtain their index sets. In addition to that, the
model also pre-computes, in a generic way, the cibesg[p] that can ship
productp and the citiegdest [p] that can receive produg, as well as some

other information. The rest of the model is generally similar to the non-sparse
model but reflects the new data organization. Note the simplicity of the objective
function

mnimze
sum(r in Routes) cost[r] * trans[r]

which sums directly over the routes and the instruction

forall (c in connections)
sum(<c,p>in routes) trans[<c,p>] <=1limt;

which generates the capacity constraints efficiently. First, ittésraver the
routes, not over all pairs of cities. Second, the aggregate opamatouses pa-
rameterc to index the set out es, retrieving the relevant products effectively.

3 Sport Scheduling

This section considers the sport-scheduling problem described in [7, 10]. The
problem consists of scheduling games betwedeams ovem — 1 weeks. In
addition, each week is divided intg/2 periods. The goal is to schedule a game
for each period of every week so that the following constraints are satisfi

5

enumCties ...;
enum Products ...;

struct Connection { Gties o; Cties d; };
struct Route { Connection e; Products p; };
struct Supplier { Products p; Cties o; };
struct Custoner { Products p; Cties d; };

{Rout e} Routes = ...;
{Connection} Connections = { ¢ | <c,p>in Routes };
{Supplier} Suppliers = { <p,c.0> | <c,p> in Routes };
float+ suppl y[Suppliers] = ..

{Custoner} Custoners = {<pccb| <c, p> in Routes };
fl oat + demand[Custoners] = ...;

float+ lim= ...;

float+ cost|[Routes] = ...;
{Cities} orig[p in Products]
{Cities} dest[p in Products]
{Connection} CP[p in Products]

{ c.o| <c,p>in Routes };
{c.d| <c,p>in Routes };
={c | <p,c>in Routes };

var float+ trans[Routes];

m nim ze
sum(r in Routes) cost[r] * trans[r]
subject to {
forall (p in Products & o in orig[p])
sum(<o,d> in CP[p]) trans[<<o, d>, p>]
forall (p in Products & d in dest[p])
sum(<o,d> in CP[p]) trans[<<o, d>, p>]
forall (c in Connections)
sun(<c, p> in Routes) trans[<c,p>] <= 1lim

suppl y[<p, 0>] ;

demand[<p, d>] ;

Figure 2: A Sparse Transportation Modst { ansp. nod).

Week 1| Week 2| Week 3| Week 4| Week 5| Week 6| Week 7
period1l| Ovsl | Ovs2 | 4vs7 | 3vs6 | 3vs7 | 1vs5 | 2vs4
period2| 2vs3 | 1vs7 | Ovs3 | 5vs7 | 1vs4 | Ovs6 | 5vs6
period 3| 4vs5 | 3vs5 | 1vs6 | Ovs4 | 2vs6 | 2vs7 | Ovs7
period4| 6vs7 | 4vs6 | 2vs5 | 1vs2 | Ovs5 | 3vs4 | 1vs3

Figure 3: A Solution to the Sport-Scheduling Application with 8 Teams

1. Every team plays against every other team;
2. Ateam plays exactly once a week;
3. Ateam plays at most twice in the same period over the course of the season.

A solution to this problem for 8 teams is shown in Figure 3. In fact, the problem
can be made more uniform by adding a "dummy” final week and requesting that
all teams play exactly twice in each period. The rest of this section derssthis
equivalent problem for simplicity.

The sport-scheduling problem is an interesting application for constraint program-
ming. On the one hand, it is a standard benchmark (submitted by Bob Daniel)
to the well-known MIP library and it is claimed in [7] that state-of-iwe MIP
solvers cannot find a solution for 14 teams. Td»e models presented in this
section are computationally much more efficient. On the other hand, the sport-
scheduling application demonstrates fundamental features of constraint program-
ming including global and symbolic constraints. In particular, the model makes
heavy use of arc-consistency [6], a fundamental constraint satisfactiongaebni
from artificial intelligence.

The rest of this section presents a simgte model that solves the 14-teams
problem in about 44 seconds. See [14] for an even more efficient model. Both
models are based on the constraint programs presented in [10].

The simple model is depicted in Figure 4. Its input is the number of teams
nbTeans. Several ranges are defined from the input: the te@iewns, the
weeks\Weks, and the extended weeEd\eks, i.e., the weeks plus the dummy
week. The model also declares an enumerated $ypd to specify the team
position in a gameh(one or away). The declarations

int occur[t in Teans] = 2;

i nt nbTeans = ...;

range Teans 1..nbTeans;

range Weeks 1..nbTeans- 1;

range EWeeks 1..nbTeans;

range Periods 1..nbTeans/2;
range Ganes 1..nbTeans*nbTeans;
enum Slots = { home, away };

int occur[t in Teans] = 2;
int values[t in Teans] =

var Teans teani Peri ods, EWeks, Sl ot s];
var Ganes gane[Peri ods, Weks];

predicate link(int f,int s,int g)
return g = (f-1) * nbTeans + s;

sol ve {
forall (win EWeks)
alldifferent(
all(pin Periods & s in Slots) teanfp,w s]);
all di fferent (gane) onDonai n;
forall (p in Periods)
di stri bute(occur, val ues,
all (win EWweks & s in Slots) teanfp,w s]);
forall (p in Periods & win Weks)
I'i nk(teanfp,w hone], teanfp,w, away], gane[p,W) ;

b

search {
gener at e(gane) ;

b

Figure 4: A Simple Model for the Sport-Scheduling Model.

int values[t in Teans] =t;

specifies two arrays that are initialized generically and are usedte@nstraints

later on. The arrapccur can be viewed as a constant function always returning

2, while the arraywal ues can be tought of as the identify function over teams.
The main modeling idea in this model is to use two classes of variables: tea

variables that specify the team playing on a given week, period, and slot and the

game variables specifying which game is played on a given week and period. The

use of game variables makes it simple to state the constraint that eaenynust

play against each other team. Games are uniquely identified by their tws.team

More precisely, a game consisting of home tdaeind away teana is uniquely

identified by the integefh- 1) *nbTeans + a. The instruction

var Teans teani Peri ods, EWeeks, Sl ot s] ;
var Games gane[Peri ods, Weeks] ;

declares the variables. These two sets of variables must be linked totethe
make sure that the game and team variables for a given period and a given week
are consistent.The instruction

predicate link(int f,int s,int @)
return g = (f-1) * nbTeans + s;

defines a predicate constraint which links the home and away teams with the iden-
tifier of the game. The predicate is used subsequently to state constrairgteethat
made arc-consistent by tleL implementation.

The constraint declarations in the model follow almost directly the problem
description. The constraint

alldifferent(all(p in Periods & s in Slots) tean[p,w, s]);

specifies that all the teams scheduled to play on weetust be different. It uses

an aggregate operatat | to collect the appropriate team variables by iterating
over the periods andrL enforces arc consistency on this constraint. See [8] for
a description on how to enforce arc consistency on this global constraint. The
constraint

di stribute(occur, val ues,
all (win EWWeks & s in Slots) teanip,w s]);

9

specifies that a team plays exactly twice over the course of the "extendedisea

Its first argument specifies the number of occurrences of the values specified by
the second argument in the set of variables specified by the third argument that
collects all variables playing in perigdd Once againgrL enforces arc consistency

on this constraint. See [9] for a description on how to enforce arc consistency on
this global constraint. The constraint

al | di fferent (gane);

specifies that all games are different, i.e., that all teams play agaicistather
team. These constraints illustrate some of the global constrainis.oDther
global constraints in the current version include a sequencing constraint, & circui
constraint, and a variety of scheduling constraints. Finally, the constraint

l'i nk(teanfp,w honme], teanp, w, anay], gane[p, W) ;

IS most interesting. It specifies that the gagaee[p, W] consists of the teams
teani p, w, hone] andt eani p, w, away] . opL enforces arc-consitency on
this symbolic constraint.

The search procedure in this statement is extremely simple and consists of
generating values for the games using the first-fail principle. Note alsgéinat-
ating values for the games automatically assigns values to the team byagunstr
propagation. As mentioned, this model finds a solution for 14 teams in about 44
seconds on a modern PC (400mhz).

4 Job-Shop Scheduling

One of the other significant features@f. is its support for scheduling applica-
tions.opL has a variety of domain-specific concepts for these applications that are
translated into state-of-the-art algorithms. To name only a few, théydadhe
concepts of activities, unary, discrete, and state resources, reserarmdrbreaks

as well as the global constraints linking them.

Figure 5 describes a simple job-shop scheduling model. The problem is to
schedule a number of jobs on a set of machines to minimize completion time,
often called thenakespanEach job is a sequence of tasks and each task requires
a machine. Figure 5 first declares the number of machines, the number of jobs, and
the number of tasks in the jobs. The main data of the problem, i.e., the duration
of all the tasks and the resources they require, are then given. The next set of
instructions

10

i nt nbMachines = ...;
range Machi nes 1..nbMachi nes;
int nbJobs = ...;
range Jobs 1..nbJobs;
i nt nbTasks = ...;
range Tasks 1..nbTasks;
Machi nes resource[Jobs, Tasks] = ...;
i nt+ duration[Jobs, Tasks] = ...
int total Duration =
sum(j in Jobs, t in Tasks) duration[j,t];
Schedul eHori zon = total Durati on;
Activity task[j in Jobs, t in Tasks](duration[j,t]);
Activity makespan(0);
Unar yResour ce tool [Machi nes];

m ni m ze nakespan. end
subject to {
forall(j in Jobs)
task[j, nbTasks] precedes makespan;
forall(j in Jobs &t in 1..nbTasks-1)
task[j,t] precedes task[],t+1];
forall (j in Jobs &t in Tasks)
task[j,t] requires tool[resource[j,t]];

h
search {

LDSear ch() {

forall (r in Machi nes
ordered by increasing | ocal Sl ack(tool[r]))
rank(tool[r]);

}

}

Figure 5: A Job-Shop Scheduling Modglabshop. nod).

11

Schedul eHori zon = total Duration;

Activity task[j in Jobs, t in Tasks](duration[j,t]);
Activity makespan(0);

Unar yResour ce t ool [Machi nes];

is most interesting. The first instruction describes the schedule horizon, i.e., the
date by which the schedule should be completed at the lastest. In this application,
the schedule horizon is given as the summation of all durations, which is clearly
an upper bound on the duration of the schedule. The next instruction declares the
activities of the problem. Activities are first-class objectsrnand can be viewed

(in a first approximation) as consisting of variables representing thengjaidite,

the duration, and the end date of a task, as well as the constraints linking them.
The variables of an activity are accessed as fields of records. In ouratppiic

there is an activity associated with each task of each job. The itistnuc

Unar yResour ce tool [Machi nes];

declares an array of unary resources. Unary resources are, once agatggsst
objects oforL; they represent resources that can be used by at most one activity at
anyone time. In other words, two activities using the same unary resource cannot
overlap in time. Note that the makespan is modeled for simplicity sesctwity
of duration zero.

Consider now the problem constraints. The first set of constraints specifies
that the activities associated with the problem tasks precede the malkespén.
The next two sets specify the precedence and resource constraints. The resource
constraints specify which activities require which resource. Findlly,dearch
procedure

search {
LDSearch() {
forall (r in Machines
ordered by increasing |ocal Sl ack(tool[r]))
rank(tool [r]);

}

illustrates a typical search procedure for job-shop scheduling and the use of lim-
ited discrepancy search (LDS) [5] as a search strategy. The seaddpre

forall (r in Machines
ordered by increasing |ocal Sl ack(tool[r]))
rank(u[r]);

12

consists of ranking the unary resources, i.e., choosing in which order the activi-
ties execute on the resources. Once the resources are ranked, it is #agyato
solution. The procedure ranks first the resource with the smallest local skack (

the machine that seems to be the most difficult to schedule) and then considers
the remaining resource using a similar heuristic. The instrudtid®ear ch()
specifies that the search space specified by the search procedure defined above
must be explored using limited discrepancy search. This strategy, whitfeds e

tive for many scheduling problems, assumes the existence of a good heuristic. Its
basic intuition is that the heuristic, when it fails, probably would have found a
solution if it had made a small number of different decisions during the search.
The choices where the search procedure does not follow the heuristic are called
discrepanciesAs a consequence, LDS systematically explores the search tree by
increasing the number of allowed discrepancies. Initially, a small numistis-of
crepancies is allowed. If the search is not successful or if an optimal@oist
desired, the number of discrepancies is increased and the process is etdted

a solution is found or the whole search space has been explored. Note that, be-
sides the default depth-first search and LB, also supports best-first search,
interleaved depth-first search, and depth-bounded limited discrepancy skarch.

Is interesting to mention that this simple model solves MT10 in about 40 seconds
and MT20 in about 0.4 seconds.

5 A Configuration Problem

This section illustratespLscrier, @ script language for controlling and composing
OPL models. It shows how to solve an application consisting of a sequence of two
models: a constraint programming model and an integer program. The application
is a configuration problem, known as Vellino’s problem, which is a small but good
representive of many similar applications. For instance, complex spodsamng
applications can be solved in a similar fashion.

Given a supply of components and bins of various types, Vellino’s problem
consists of assigning the components to the bins so that the bin constraints are
satisfied and the smallest possible number of bins is used. There are five types
of components, i.e., glass, plastic, steel, wood, and copper, and three types of
bins, i.e., red, blue, green. The bins must obey a variety of configuration con-
straints. Containment constraints specify which components can go into which
bins: red bins cannot contain plastic or steel, blue bins cannot contain wood or

13

Model bin("genBin.nod", "genBin.dat");
i mport enum Col ors bin. Col ors;
i nport enum Conponents bi n. Conponent s;
struct Bin { Colors c; int n[Conponents]; };
int nbBin := 0;
Open Bin bins[1..nbBin];
whi | e bi n. next Sol ution() do {

nbBin := nbBin + 1;

bi ns. addh() ;

bi ns[nbBin].c := bin.c;

forall (c in Conponents)

bi ns[nbBin].n[c] := bin.n[c];

}
Model pro("chooseBin. nmod", "chooseBin.dat");
i f poat sekvéEdl uheon{at cost: ";

cout << pro.objectiveValue() << endl;
}

Figure 6: A Script to Solve Vellino’s Problerwél | i no. osc).

plastic, and green bins cannot contain steel or glass. Capacity constratifg spe

a limit for certain component types for some bins: red bins contain at most one
wooden component and green bins contain at most two wooden components. Fi-
nally, requirement constraints specify some compatibility constraintsdegtthe
components: wood requires plastic, glass excludes copper and copper excludes
plastic. In addition, we are given an initial capacity for each bin, i.al,bi@s

have a capacity of 3 components, blue bins of 1 and green bins of 4 and a de-
mand for each component, i.e., 1 glass, 2 plastic, 1 steel, 3 wood, and 2 copper
components.

The strategy to solve this problem consists of generating all the possible bin con-
figurations and then to choose the smallest number of them that meet the demand.
This strategy is implemented using the script depicted in Figure 6 and twdsnode
genBi n. nod andchooseBi n. nod depicted in Figures 7 and 8. It is interest-

14

enum Col ors ...;

enum Conponents ...

i nt capacity[Colors] = ...

i nt maxCapacity = max(c in Colors) capacity[c];

var Col ors c;

var int n[Conponents] in 0..nmaxCapacity;

sol ve {
0 < sun(c in Conponents) n[c] <= capacity[c];
c =red =>

n[plastic] = 0 &n[steel] =0 & nfwood] <=1
c = blue =>
n[plastic] = 0 & nfwood] = O;

C = green =>
nfglass] = 0 & n[steel] = 0 & nfwood] <= 2;

nfwood] >= 1 => n[plastic] >= 1

n[glass] = 0 \/ n[copper] = O;

n[copper] = 0 \/ n[plastic] = 0;

Figure 7: Generating the Bins in Vellino’s Problege(iBi n. nod) .

15

i nport enum Col ors;
I mport enum Conponents;
struct Bin { Colors c; int n[Conponents]; };
i mport int nbBin;
i mport Bin bins[1..nbBin];
range R 1..nbBin;
i nt demand[Conponents] = ...;
i nt maxDemand = max(c in Conponents) demand[c];
var int produce[R] in 0O..nmaxDemand;
mnimze

sum(b in R) produce[b]
subject to

forall (c in Conponents)

sum(b in R) bins[b].n[c]*produce[b] = demand[c];

Figure 8: Choosing the Bins in Vellino’s ProblemhooseBi n. nod) .

16

ing to study the script in detail at this point. The instruction
Model bi n("genBi n. mod", "genBi n. dat");

declare the first model. Models are, of course, a fundamental concepisotrr:

they support a variety of methods (e giol ve andnext Sol ut i on), their data

can be accessed as fields of records, and they can be passed as parameters t
procedures. The instructions

i mport enum Col ors bin. Col ors;
i nport enum Conponents bi n. Component s;

import the enumerated types from the model to the script; these enumerated types
will be imported by the second model as well. The instructions

struct Bin { Colors c; int n[Conmponents]; };
int nbBin := 0;
Open Bin bins[1..nbBin];

declare a variable to store the number of bin configurations and an open array to
store the bin configurations themselves. Open arrays are arrays that camgrow a
shrink dynamically during the execution. The instructions

whi | e bi n. next Sol ution() do {
nbBin := nbBin + 1;
bi ns. addh();
bi ns[nbBin].c := bin.c;
forall (c in Conponents)
bi ns[nbBin].n[c] := bin.n[c];
}

enumerate all the bin configurations and store them irbihe array in model
pr o. Instructionbi n. next Sol uti on() returns the next solution (if any) of
the modelbi n. Instructionbi ns. addh increases the size of the open array
(addh stands for "add high”). The subsequent instructions access the model data
and store them in the open array. Once this step is completed, the second model
is executed and produces a solution at cost 8.

ModelgenBi n. nod specifies how to generate the bin configurations: Itis a
typical constraint program using logical combinations of constraints that should

17

not raise any difficulty. ModethooseBi n. nod is an integer program that
chooses and minimizes the number of bins. This model imports the enumerated
types as mentioned previously. It also imports the bin configurations using the
instructions

i mport int nbBin;
i mport Bin bins[1l..nbBin];

It is important to stress to both models can be developed and tested independently
since import declarations can be initialized in a data file when a model irun
isolation (i.e., not from a script). This makes the overall design compositiona

6 Conclusion

The purpose of this paper was to review, through four applications, a number
of features oforL to give a preliminary understanding of the expressiveness of
the language. These features include very high-level algebraic notations and data
structures, a rich constraint programming language supporting logical, higher-
level, and global constraints, support for scheduling and resource allocation prob-
lems, and search procedures and strategies. The paper also introduced briefly
opLscripT, @ SCript language to control and compesemodels. The four applica-

tions presented in this paper should give a preliminary, although very incomplete,
understanding of howrL can decrease development time significantly.

References

[1] J. Bisschop and A. Meeraus. On the Development of a General Algebraic
Modeling System in a Strategic Planning Environmeviathematical Pro-
gramming Study20:1-29, 1982.

[2] A. Colmerauer. An Introduction to Prolog HICommun. ACM28(4):412—
418, 1990.

[3] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The Constraint Logic Programming Language CHIPPrt
ceedings of the International Conference on Fifth Generation Computer Sys-
tems Tokyo, Japan, December 1988.

18

[4] R. Fourer, D. Gay, and B.W. KernighadMPL: A Modeling Language for
Mathematical Programmingrhe Scientific Press, San Francisco, CA, 1993.

[5] W.D. Harvey and M.L. Ginsberg. Limited Discrepancy SearchPloceed-
ings of the 14th International Joint Conference on Artificial Intelligence
Montreal, Canada, August 1995.

[6] A.K. Mackworth. Consistency in Networks of RelationArtificial Intelli-
gence 8(1):99-118, 1977.

[7] K. McAloon, C. Tretkoff, and G. Wetzel. Sport League SchedulingPio-
ceedings of the 3th llog International Users MeetiR@ris, France, 1997.

[8] J-C. Régin. A filtering algorithm for constraints of difference in CSRs.
AAAI-94, proceedings of the Twelth National Conference on Artificial Intel-
ligence pages 362—-367, Seattle, Washington, 1994.

[9] J-C. Régin. Generalized arc consistency for global cardinality canstra
In AAAI-96, proceedings of the Thirteenth National Conference on Artificial
Intelligence pages 209-215, Portland, Oregon, 1996.

[10] J-C. Régin. Sport league schedulingIMFrORMS Montreal, Canada, 1998.
[11] llog SA. llog Solver 4.31 Reference Manual, 1998.

[12] G. Smolka. The Oz Programming Model. In Jan van Leeuwen, editon-
puter Science TodayNCS, No. 1000, Springer Verlag, 1995.

[13] P. Van Hentenryck.The OPL Optimization Programming Languag&he
MIT Press, Cambridge, Mass., 1999.

[14] P. Van Hentenryck, L. Michel, L. Perron, and J.C. Regin”, Constraint
Programming in OPL. irProceedings of the International Conference on
the Principles and Practice of Declarative Programming (PPDP;32aris,
France, 1999

[15] P. Van HentenryckOPL Script: Composing and Controlling ModelBro-
ceedings of the 1999 Workshop of the ERCIM Working Group on Con-
straints Paphos, Cyprus, 1999

19

